Scientific American:

The strong force holds our atoms together. Scientists may have observed its small-scale fluctuations for the first time

By Allison Parshall 

The strong force is an enigma. Through gluons, it binds together quarks, one of the two basic building blocks of matter, into the protons and neutrons at the center of every atom. True to its name, it is the strongest of the four known fundamental forces, but it only exerts its might across subatomic distances. Despite its power and importance, the strong force is the hardest force to observe in action, and its behavior is nearly impossible to mathematically predict.

Now a group of scientists at Brookhaven National Laboratory on Long Island have caught a fresh, unexpected glimpse of the strong force at work—so unexpected that theorists have invented new models to explain it. If the theorists are right, this experiment is the first measurement of how the strong force field fluctuates over short distances. The results were published on January 18 in Nature.

“This local fluctuation of the strong force field, we don’t think it has ever been measured before,” says Aihong Tang, one of the Brookhaven physicists who conducted the new study. It will allow scientists “to study the strong force from a different perspective.”

Go to link